skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tadić, Nika"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kellogg, Douglas (Ed.)
    The life cycle of eukaryotic microorganisms involves complex transitions between states such as dormancy, mating, meiosis, and cell division, which are often studied independently from each other. Therefore, most microbial life cycles are theoretical reconstructions from partial observations of cellular states. Here we show that complete microbial life cycles can be directly and continuously studied by combining microfluidic culturing, life cycle stage-specific segmentation of micrographs, and a novel cell tracking algorithm, FIEST, based on deep learning video frame interpolation. As proof of principle, we quantitatively imaged and compared cell growth and the activity state of the cell division kinase, Cdk1, across the life cycle of Saccharomyces cerevisiae for up to three sexually reproducing generations. Our analysis of S. cerevisiae's life cycle provided the following new insights: 1) the accumulation of cell cycle regulators, such as Whi5, is tailored to each life cycle stage; 2) cell growth always preceded exit from nonproliferative states in our conditions; 3) the temporal coordination of meiotic events is the same across sexually reproducing populations when each generation is exposed to same conditions; 4) information such as cell size and morphology resets after each sexual reproduction cycle. Image processing and tracking algorithms are available as the Python package Yeastvision, which could be used study pathogens such as Candida glabrata, Cryptococcus neoformans, Colletotrichum acutatum, and other unicellular systems. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026